









还剩27页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
浙江省台州市玉环县十校2016-2017学年九年级(上)期中数学试卷一.选择题(共10小题,每小题4分,共40分)1.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A.1个B.2个C.3个D.4个2.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为( )A.1B.﹣1C.2D.﹣23.如图,已知函数y=ax2+bx+c(a≠0),有下列四个结论
①abc>0;
②4a+2b+c>0;
③3a+c<0;
④a+b≥m(am+b),其中正确的有( )A.1个B.2个C.3个D.4个4.下列说法正确的是( )A.任意三点可以确定一个圆B.平分弦的直径垂直于弦,并且平分该弦所对的弧C.同一平面内,点P到⊙O上一点的最小距离为2,最大距离为8,则该圆的半径为5D.同一平面内,点P到圆心O的距离为5,且圆的半径为10,则过点P且长度为整数的弦共有5条5.将量角器按如图摆放在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28°C.30°D.56°6.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上任意一点,连结AD,GD.=50°,则∠AGD=( )A.50°B.55°C.65°D.75°7.如图,AC、BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为( )A.B.C.D.8.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为( )A.
10.5B.7﹣
3.5C.
11.5D.7﹣
3.59.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动10.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是( )A.x0>﹣5B.x0>﹣1C.﹣5<x0<﹣1D.﹣2<x0<3 二.选择题(共6小题,每小题5分,共30分)11.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是 .12.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为 .13.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是 .14.若抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于正半轴C点,且AC=20,BC=15,∠ACB=90°,则此抛物线的解析式为 .15.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为 .16.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2008在y轴的正半轴上,点B1,B2,B3,…,B2008在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长= . 三.解答题(有6小题,共80分)17.(10分)课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.18.(10分)如图,AB,CD是⊙O的两条直径,过点A作AE∥CD交⊙O于点E,连接BD,DE,求证BD=DE.19.(12分)
(1)作△ABC的外接圆;
(2)若AC=BC,AB=8,C到AB的距离是2,求△ABC的外接圆半径.20.(14分)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.
(1)求证
①PE=PD;
②PE⊥PD;
(2)设AP=x,△PBE的面积为y.
①求出y关于x的函数关系式,并写出x的取值范围;
②当x取何值时,y取得最大值,并求出这个最大值.21.(16分)九
(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.22.(18分)如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当CM+AM的值最小时,求M的坐标;
(4)在线段BC下方的抛物线上有一动点P,求△PBC面积的最大值. 2016-2017学年浙江省台州市玉环县十校九年级(上)期中数学试卷参考答案与试题解析 一.选择题(共10小题,每小题4分,共40分)1.二次函数y=x2﹣8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于的点P共有( )A.1个B.2个C.3个D.4个【考点】二次函数综合题.【分析】由题可求出MN的长,即△MNP的底边已知,要求面积为,那么根据面积即可求出高,只要把相应的y值代入即可解答.【解答】解y=x2﹣8x+15的图象与x轴交点(3,0)和(5,0),|MN|=2,设p点(x,y),y=x2﹣8x+15,面积==|MN|•|y|,可得y1=,或者y2=﹣当y=时,x=;当y=﹣时,x=所以共有四个点.故选D.【点评】本题结合图象的性质考查二次函数的综合应用,难度中等.要注意函数求出的各个解是否符合实际. 2.二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为( )A.1B.﹣1C.2D.﹣2【考点】抛物线与x轴的交点.【分析】根据抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这一段位于x轴的上方,而抛物线在2<x<3这一段位于x轴的下方,于是可得抛物线过点(2,0),然后把(2,0)代入y=a(x﹣4)2﹣4(a≠0)可求出a的值.【解答】解∵抛物线y=a(x﹣4)2﹣4(a≠0)的对称轴为直线x=4,而抛物线在6<x<7这一段位于x轴的上方,∴抛物线在1<x<2这一段位于x轴的上方,∵抛物线在2<x<3这一段位于x轴的下方,∴抛物线过点(2,0),把(2,0)代入y=a(x﹣4)2﹣4(a≠0)得4a﹣4=0,解得a=1.故选A.【点评】本题考查了抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2﹣4ac决定抛物线与x轴的交点个数△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点. 3.如图,已知函数y=ax2+bx+c(a≠0),有下列四个结论
①abc>0;
②4a+2b+c>0;
③3a+c<0;
④a+b≥m(am+b),其中正确的有( )A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解
①抛物线开口方向向下,则a<0.抛物线对称轴在y轴的右侧,则a、b异号,所以ab<0.又∵抛物线与y轴交于正半轴,则c>0,∴abc<0,故
①错误;
②如图所示,当x=0时,y>0,则根据抛物线的对称性知,当x=2时,y>0,即4a+2b+c>0.故
②正确;
③如图所示,∵当x=﹣1时,y<0,对称轴x=﹣=1,∴b=﹣2a,则﹣3a﹣c=﹣(a﹣b+c)>0,即﹣3a﹣c>0,即3a+c<0,故
③正确;
④⑤∵x=1时,y=a+b+c(最大值),x=m时,y=am2+bm+c,∵m≠1的实数,∴a+b+c>am2+bm+c,∴a+b>m(am+b)成立.∴
④正确.综上所述,正确的结论有3个.故选C.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 4.下列说法正确的是( )A.任意三点可以确定一个圆B.平分弦的直径垂直于弦,并且平分该弦所对的弧C.同一平面内,点P到⊙O上一点的最小距离为2,最大距离为8,则该圆的半径为5D.同一平面内,点P到圆心O的距离为5,且圆的半径为10,则过点P且长度为整数的弦共有5条【考点】点与圆的位置关系;垂径定理;确定圆的条件.【分析】利用点与圆的位置关系、垂径定理及确定圆的条件分别判断后即可确定正确的选项.【解答】解A、不在同一直线上的三点确定一个圆,故错误;B、平分弦(不是直径)的直径垂直于弦,并且平分该弦所对的弧,故错误;C、同一平面内,点P到⊙O上一点的最小距离为2,最大距离为8,则该圆的半径为(8﹣2)÷2=3,故错误;D、同一平面内,点P到圆心O的距离为5,且圆的半径为10,则过点P且长度为整数的弦共有5条,故正确,故选D.【点评】本题考查了点与圆的位置关系、垂径定理及确定圆的条件,属于基础定义及定理,解题的关键是牢记有关的定理,难度不大. 5.将量角器按如图摆放在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为( )A.15°B.28°C.30°D.56°【考点】圆周角定理.【分析】根据圆周角定理可知圆周角的度数等于它所对的弧的度数的一半,从而可求得∠ACB的度数.【解答】解根据圆周角定理可知圆周角的度数等于它所对的弧的度数的一半,根据量角器的读数方法可得(86°﹣30°)÷2=28°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键. 6.如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上任意一点,连结AD,GD.=50°,则∠AGD=( )A.50°B.55°C.65°D.75°【考点】圆周角定理.【分析】首先连接OC,BD,由=50°,根据弧与圆心角的关系,可求得∠BOC的度数,又由弦CD⊥AB,由垂径定理可得=,则可求得∠BAD的度数,又由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠B的度数,然后由圆周角定理,求得答案.【解答】解连接OC,BD,∵=50°,∴∠BOC=50°,∵弦CD⊥AB,∴=,∴∠BAD=∠BOC=25°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠BAD=65°,∴∠AGD=∠B=65°.故选C.【点评】此题考查了圆周角定理、垂径定理以及弧与圆心角的关系.注意准确作出辅助线是解此题的关键. 7.如图,AC、BD为圆O的两条互相垂直的直径,动点P从圆心O出发,沿O→C→D→O的路线作匀速运动,设运动时间为t秒,∠APB的度数为y度,那么表示y与t之间函数关系的图象大致为( )A.B.C.D.【考点】动点问题的函数图象.【分析】抓住5个关键点当P与O重合时,P向C运动过程中,当P运动到C时,当P在弧CD上运动时,当P从D运动到O时,结合选项即可确定出y与t的大致图象.【解答】解当P与O重合时,∠APB的度数为90度;P向C运动过程中,∠APB的度数逐渐减小;当P运动到C时,利用圆周角定理得到∠APB的度数为45度;当P在弧CD上运动时,∠APB的度数不变,都为45度;当P从D运动到O时,∠APB的度数逐渐增大,作出函数y与t的大致图象,如图所示故选C.【点评】此题考查了动点问题的函数图象,弄清动点P运动的轨迹是解本题的关键. 8.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为( )A.
10.5B.7﹣
3.5C.
11.5D.7﹣
3.5【考点】圆周角定理;三角形中位线定理.【分析】由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF=AB=
3.5为定值,则GE+FH=GH﹣EF=GH﹣
3.5,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值14﹣
3.5=
10.5.【解答】解当GH为⊙O的直径时,GE+FH有最大值.当GH为直径时,E点与O点重合,∴AC也是直径,AC=14.∵∠ABC是直径上的圆周角,∴∠ABC=90°,∵∠C=30°,∴AB=AC=7.∵点E、F分别为AC、BC的中点,∴EF=AB=
3.5,∴GE+FH=GH﹣EF=14﹣
3.5=
10.5.故选A.【点评】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键. 9.已知二次函数y=x2﹣bx+1(﹣1≤b≤1),当b从﹣1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( )A.先往左上方移动,再往左下方移动B.先往左下方移动,再往左上方移动C.先往右上方移动,再往右下方移动D.先往右下方移动,再往右上方移动【考点】二次函数图象与几何变换.【分析】先分别求出当b=﹣
1、
0、1时函数图象的顶点坐标即可得出答案.【解答】解当b=﹣1时,此函数解析式为y=x2+x+1,顶点坐标为(﹣,);当b=0时,此函数解析式为y=x2+1,顶点坐标为(0,1);当b=1时,此函数解析式为y=x2﹣x+1,顶点坐标为(,).故函数图象应先往右上方移动,再往右下方移动.故选C.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的性质是解答此题的关键. 10.已知两点A(﹣5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是( )A.x0>﹣5B.x0>﹣1C.﹣5<x0<﹣1D.﹣2<x0<3【考点】二次函数图象上点的坐标特征.【分析】先判断出抛物线开口方向上,进而求出对称轴即可求解.【解答】解∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a﹣5b+c>9a+3b+c,∴<1,∴﹣>﹣1,∴x0>﹣1∴x0的取值范围是x0>﹣1.故选B.【点评】本题考查了二次函数图象上点坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最小确定出抛物线开口方向上是解题的关键. 二.选择题(共6小题,每小题5分,共30分)11.如图在平面直角坐标系中,过格点A,B,C作一圆弧,圆心坐标是 (2,0) .【考点】垂径定理;点的坐标;坐标与图形性质.【分析】根据垂径定理的推论弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【解答】解根据垂径定理的推论弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为(2,0).【点评】本题考查垂径定理的知识,理解本题中圆心在圆的弦的垂直平分线上,是垂直平分线的交点. 12.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为 3 .【考点】垂径定理;勾股定理.【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长【解答】解作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=8,∴BM=DN=4,∴OM=ON==3,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3.故答案为3.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 13.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是 1 .【考点】二次函数图象与几何变换.【分析】先利用配方法得到抛物线y=x2﹣2x的顶点坐标为(1,﹣1),则抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,然后利用阴影部分的面积等于三角形面积进行计算.【解答】解y=x2﹣2x=(x﹣1)2﹣1,即平移后抛物线的顶点坐标为(1,﹣1),所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,所以对称轴与两抛物线所围成的阴影部分的面积=×1×2=1.故答案为1.【点评】本题考查了二次函数图象与几何变换由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 14.若抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于正半轴C点,且AC=20,BC=15,∠ACB=90°,则此抛物线的解析式为 y=﹣x2+x+12或y=﹣x2﹣x+12 .【考点】待定系数法求二次函数解析式.【分析】先利用勾股定理计算出AB,再利用面积法求出OC,接着再利用勾股定理计算出OA和OB,则可得到抛物线与x轴的交点坐标为(﹣9,0)、(16,0)或(﹣16,0)、(9,0),然后利用交点式分别求出两种情况的抛物线解析式.【解答】解如图,∵∠ACB=90°,AC=20,BC=15,∴AB==25,∵OC•AB=AC•BC,∴OC==12,∴OA==9,∴OB=25﹣9=16,∴抛物线与x轴的交点坐标为(﹣9,0)、(16,0)或(﹣16,0)、(9,0),当抛物线过点(﹣9,0)、(16,0)时,设抛物线解析式为y=a(x+9)(x﹣16),把C(0,12)代入得a•9•(﹣16)=12,解得a=﹣,此时抛物线解析式为y=﹣(x+9)(x﹣16),即y=﹣x2+x+12;当抛物线过点(﹣16,0)、(9,0)时,设抛物线解析式为y=a(x+16)(x﹣9),把C(0,12)代入得a•16•(﹣9)=12,解得a=﹣,此时抛物线解析式为y=﹣(x+16)(x﹣9),即y=﹣x2﹣x+12综上所述,抛物线解析式为y=﹣x2+x+12或y=﹣x2﹣x+12.【点评】本题考查了待定系数法求二次函数的解析式在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解. 15.在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为 3或 .【考点】点与圆的位置关系;勾股定理;垂径定理.【分析】连结CP,PB的延长线交⊙C于P′,如图,先计算出CB2+PB2=CP2,则根据勾股定理的逆定理得∠CBP=90°,再根据垂径定理得到PB=P′B=4,接着证明四边形ACBP为矩形,则PA=BC=3,然后在Rt△APP′中利用勾股定理计算出P′A=,从而得到满足条件的PA的长为3或.【解答】解连结CP,PB的延长线交⊙C于P′,如图,∵CP=5,CB=3,PB=4,∴CB2+PB2=CP2,∴△CPB为直角三角形,∠CBP=90°,∴CB⊥PB,∴PB=P′B=4,∵∠C=90°,∴PB∥AC,而PB=AC=4,∴四边形ACBP为矩形,∴PA=BC=3,在Rt△APP′中,∵PA=3,PP′=8,∴P′A==,∴PA的长为3或.故答案为3或.【点评】本题考查了点与圆的位置关系点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了垂径定理和勾股定理. 16.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2008在y轴的正半轴上,点B1,B2,B3,…,B2008在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长= 2008 .【考点】二次函数综合题.【分析】先计算出△A0B1A1;△A1B2A2;△A2B3A2的边长,推理出各边长组成的数列各项之间的排列规律,依据规律得到△A2007B2008A2008的边长.【解答】解作B1A⊥y轴于A,B2B⊥y轴于B,B3C⊥y轴于C.设等边△A0B1A
1、△A1B2A
2、△A2B3A3中,AA1=a,BA2=b,CA2=c.
①等边△A0B1A1中,A0A=a,所以B1A=atan60°=a,代入解析式得×(a)2=a,解得a=0(舍去)或a=,于是等边△A0B1A1的边长为×2=1;
②等边△A2B1A1中,A1B=b,所以BB2=btan60°=b,B2点坐标为(b,1+b)代入解析式得×(b)2=1+b,解得b=﹣(舍去)或b=1,于是等边△A2B1A1的边长为1×2=2;
③等边△A2B3A3中,A2C=c,所以CB3=btan60°=c,B3点坐标为(c,3+c)代入解析式得×(c)2=3+c,解得c=﹣1(舍去)或c=,于是等边△A3B3A2的边长为×2=3.于是△A2007B2008A2008的边长为2008.故答案为2008.【点评】此题主要考查了二次函数和等边三角形的性质的综合应用,将其性质结合在一起,增加了题目的难度,是一道开放题,有利于培养同学们的探索发现意识. 三.解答题(有6小题,共80分)17.(10分)(2014秋•余姚市期末)课堂上,师生一起探究知,可以用己知半径的球去测量圆柱形管子的内径.小明回家后把半径为5cm的小皮球置于保温杯口上,经过思考找到了测量方法,并画出了草图(如图).请你根据图中的数据,帮助小明计算出保温杯的内径.【考点】圆柱的计算.【分析】构造相应的直角三角形,那么OD为球的半径,OG为20﹣12﹣5,利用勾股定理即可求得OD长,乘2即为保温杯的内径.【解答】解连OD.∵EG=20﹣12=8,∴OG=8﹣5=3,∴GD=4,∴AD=2GD=8cm.答保温杯的内径为8cm.【点评】在圆内利用垂直于弦的直径构造直角三角形是常用的辅助线方法. 18.(10分)(2016秋•玉环县期中)如图,AB,CD是⊙O的两条直径,过点A作AE∥CD交⊙O于点E,连接BD,DE,求证BD=DE.【考点】圆心角、弧、弦的关系;平行线的性质.【分析】连接OE,可得∠A=∠OEA,再由AE∥CD得∠BOD=∠A,∠DOE=∠OEA,从而得出∠BOD=∠DOE,则BD=DE.【解答】证明连接OE,如图,∵OA=OE,∴∠A=∠OEA,∵AE∥CD,∴∠BOD=∠A,∠DOE=∠OEA,∴∠BOD=∠DOE,∴BD=DE.【点评】此题主要考查了平行线的性质,在同圆中,等弦所对的圆心角相等. 19.(12分)(2016秋•玉环县期中)
(1)作△ABC的外接圆;
(2)若AC=BC,AB=8,C到AB的距离是2,求△ABC的外接圆半径.【考点】作图—复杂作图;三角形的外接圆与外心.【分析】
(1)如图1,分别作AB和BC的垂直平分线,两垂直平分线相交于点O,连结OB,然后以OB为半径作⊙O即可;
(2)连结OA,作CD⊥AB于D,如图2,设⊙O的半径为r,根据等腰三角形的性质得AD=BD=4,再利用垂径定理的推论可判断点O在CD上,则OD=CD﹣OC=8﹣r,然后利用勾股定理得到(r﹣2)2+42=r2,再解方程即可.【解答】解
(1)如图1,⊙O为所求;
(2)连结OA,作CD⊥AB于D,如图2,设⊙O的半径为r,∵AC=BC,∴AD=BD=4,∴点O在CD上,∴OD=CD﹣OC=8﹣r,在Rt△OAD中,∵OD2+AD2=OA2,∴(r﹣2)2+42=r2,解得r=5,即△ABC的外接圆半径为5.【点评】本题考查了作图﹣复杂作图复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心. 20.(14分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.
(1)求证
①PE=PD;
②PE⊥PD;
(2)设AP=x,△PBE的面积为y.
①求出y关于x的函数关系式,并写出x的取值范围;
②当x取何值时,y取得最大值,并求出这个最大值.【考点】二次函数综合题.【分析】
(1)可通过构建全等三角形来求解.过点P作GF∥AB,分别交AD、BC于G、F,那么可通过证三角形GPD和EFP全等来求PD=PE以及PE⊥PD.在直角三角形AGP中,由于∠CAD=45°,因此三角形AGP是等腰直角三角形,那么AG=PG,而PB=PE,PF⊥BE,那么根据等腰三角形三线合一的特点可得出BF=FE=AG=PG,同理可得出两三角形的另一组对应边DG,PF相等,因此可得出两直角三角形全等.可得出PD=PE,∠GDP=∠EPF,而∠GDP+∠GPD=90°,那么可得出∠GPD+∠EPF=90°,由此可得出PD⊥PE.
(2)求三角形PBE的面积,就要知道底边BE和高PF的长,
(1)中已得出BF=FE=AG,那么可用AP在等腰直角三角形AGP中求出AG,GP即BF,FE的长,那么就知道了底边BE的长,而高PF=CD﹣GP,也就可求出PF的长,可根据三角形的面积公式得出x,y的函数关系式.然后可根据函数的性质及自变量的取值范围求出y的最大值以及对应的x的取值.【解答】
(1)证明
①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90度.又∵PB=PE,∴BF=FE,∴GP=FE,∴△EFP≌△PGD(SAS).∴PE=PD.
②∴∠1=∠2.∴∠1+∠3=∠2+∠3=90度.∴∠DPE=90度.∴PE⊥PD.
(2)解
①过P作PM⊥AB,可得△AMP为等腰直角三角形,四边形PMBF为矩形,可得PM=BF,∵AP=x,∴PM=x,∴BF=PM=,PF=1﹣.∴S△PBE=BE×PF=BF•PF=x•(1﹣x)=﹣x2+x.即y=﹣x2+x.(0<x<).
②y=﹣x2+x=﹣(x﹣)2+∵a=﹣<0,∴当x=时,y最大值=.【点评】本题主要考查了正方形,矩形的性质,全等三角形的判定以及二次函数的综合应用等知识点,通过构建全等三角形来得出相关的边和角相等是解题的关键. 21.(16分)(2014•武汉)九
(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【分析】
(1)根据单价乘以数量,可得利润,可得答案;
(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;
(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解
(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述y=;
(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;
(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值. 22.(18分)(2016秋•玉环县期中)如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当CM+AM的值最小时,求M的坐标;
(4)在线段BC下方的抛物线上有一动点P,求△PBC面积的最大值.【考点】二次函数综合题.【分析】
(1)把点A的坐标代入函数解析式来求b的值;然后把函数解析式转化为顶点式,即可得到点D的坐标;
(2)由两点间的距离公式分别求出AC,BC,AB的长,再根据勾股定理即可判断出△ABC的形状;
(3)根据抛物线的对称性可知AM=BM.所以AM+CM=BM+CM≥BC=2;
(4)过点P作y轴的平行线交BC于F.利用待定系数法求得直线BC的解析式,可求得点F的坐标,设P点的横坐标为m,可得点P的纵坐标,继而可得线段PF的长,然后利用面积和即S△PBC=S△CPF+S△BPF=PF×BO,即可求出.【解答】解
(1)把A(﹣1,0)代入得到0=×(﹣1)2﹣b﹣2,解得b=﹣,则该抛物线的解析式为y=x2﹣x﹣2.又∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点D的坐标是(,﹣);
(2)由
(1)知,该抛物线的解析式为y=x2﹣x﹣2.则C(0,﹣2).又∵y=x2﹣x﹣2=(x+1)(x﹣4),∴A(﹣1,0),B(4,0),∴AC=,BC=2,AB=5,∴AC2+BC2=AB2,∴△ABC是直角三角形;
(3)由
(2)知,B(4,0),C(0,﹣2),由抛物线的性质可知点A和B关于对称轴对称,如答图1所示∴AM=BM,∴AM+CM=BM+CM≥BC=2.∴CM+AM的最小值是2;
(4)如答图2,过点P作y轴的平行线交BC于F.设直线BC的解析式为y=kx﹣2(k≠0).把B(4,0)代入,得0=4k﹣2,解得k=.故直线BC的解析式为y=x﹣2.故设P(m,m2﹣m﹣2),则F(m,m﹣2),∴S△PBC=PF•OB=×(m﹣2﹣m2+m+2)×4=﹣(m﹣2)2+4,即S△PBC=﹣(m﹣2)2+4,∴当m=2时,△PBC面积的最大值是4.【点评】此题考查了二次函数综合应用,要注意数形结合,认真分析,仔细识图.注意待定系数法求函数的解析式,注意函数交点坐标的求法,三角形面积的求法.。


