









还剩18页未读,继续阅读
本资源只提供10页预览,全部文档请下载后查看!喜欢就下载吧,查找使用更方便
文本内容:
2016-2017学年浙江省杭州市萧山区城北片九年级(上)期中数学试卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.从1~9这九个自然数中任取一个,是2的倍数的概率是( )A.B.C.D.2.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是( )A.4B.6C.8D.103.由二次函数y=2(x﹣3)2+1,可知( )A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大4.与y=2(x﹣1)2+3形状相同的抛物线解析式为( )A.y=1+x2B.y=(2x+1)2C.y=(x﹣1)2D.y=2x25.下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦6.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )A.B.C.D.7.已知二次函数y=﹣x2﹣3x﹣,设自变量的值分别为x1,x2,x3,且﹣3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是( )A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y18.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( )A.x1=﹣3,x2=﹣1B.x1=1,x2=3C.x1=﹣1,x2=3D.x1=﹣3,x2=19.已知⊙O的半径为3,△ABC内接于⊙O,AB=3,AC=3,D是⊙O上一点,且AD=3,则CD的长应是( )A.3B.6C.D.3或610.二次函数y=ax2+bx+c(a>0)的顶点为P,其图象与x轴有两个交点A(﹣m,0),B(1,0),交y轴于点C(0,﹣3am+6a),以下说法
①m=3;
②当∠APB=120°时,a=;
③当∠APB=120°时,抛物线上存在点M(M与P不重合),使得△ABM是顶角为120°的等腰三角形;
④抛物线上存在点N,当△ABN为直角三角形时,有a≥正确的是( )A.
①②B.
③④C.
①②③D.
①②③④ 二.认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若函数y=(m﹣1)x|m|+1是二次函数,则m的值为 .12.如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是 .13.把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是 .14.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为 .15.△ABC的一边长为5,另两边长分别是二次函数y=x2﹣6x+m与x轴的交点坐标的横坐标的值,则m的取值范围为 .16.如图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A、O,分别与两坐标轴的正半轴交于点E、F.当EF⊥OA时,此时EF= . 三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.
(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).
(2)在△ABC中,AC=4米,∠ABC=45°,试求小明家圆形花坛的半径长.18.在1个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外,其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白色的概率为
0.5.
(1)求口袋中红球的个数;
(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球,不放回,再找出一个画树状图的方法求甲摸的两个球且得2分的概率.19.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,
(1)求∠ABD的度数.
(2)若∠CDB=30°,BC=3,求⊙O的半径.20.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.21.已知如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求四边形AEOF的面积.
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围.22.某景点试开放期间,团队收费方案如下不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.23.如图,直线l y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在
(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d
1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数). 2016-2017学年浙江省杭州市萧山区城北片九年级(上)期中数学试卷参考答案与试题解析
一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.1.从1~9这九个自然数中任取一个,是2的倍数的概率是( )A.B.C.D.【考点】概率公式.【分析】先从1~9这九个自然数中找出是2的倍数的有
2、
4、
6、8共4个,然后根据概率公式求解即可.【解答】解1~9这九个自然数中,是2的倍数的数有
2、
4、
6、8,共4个,∴从1~9这九个自然数中任取一个,是2的倍数的概率是.故选B. 2.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是( )A.4B.6C.8D.10【考点】垂径定理;勾股定理.【分析】连接OA,根据勾股定理求出AE的长,进而可得出结论.【解答】解连接OA,∵OC⊥AB,OA=5,OE=3,∴AE===4,∴AB=2AE=8.故选C. 3.由二次函数y=2(x﹣3)2+1,可知( )A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【考点】二次函数的性质.【分析】根据二次函数的性质,直接根据a的值得出开口方向,再利用顶点坐标的对称轴和增减性,分别分析即可.【解答】解由二次函数y=2(x﹣3)2+1,可知A∵a>0,其图象的开口向上,故此选项错误;B.∵其图象的对称轴为直线x=3,故此选项错误;C.其最小值为1,故此选项正确;D.当x<3时,y随x的增大而减小,故此选项错误.故选C. 4.与y=2(x﹣1)2+3形状相同的抛物线解析式为( )A.y=1+x2B.y=(2x+1)2C.y=(x﹣1)2D.y=2x2【考点】待定系数法求二次函数解析式.【分析】抛物线的形状只是与a有关,a相等,形状就相同.【解答】解y=2(x﹣1)2+3中,a=2.故选D. 5.下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦【考点】圆心角、弧、弦的关系;圆的认识;垂径定理.【分析】等弧只有在同圆或等圆中才能出现,因此,等弧所对的弦相等是正确的.【解答】解在同圆或等圆中,相等的圆周角所对的弧相等,故A错误;等弧只有在同圆或等圆中才能出现,因此,等弧所对的弦相等是正确的,故B正确;不在同一条直线上的三个点确定一个圆,故C错误;平分弦(不是直径)的直径垂直于弦,故D错误.故选B. 6.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是( )A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x=,与y轴的交点坐标为(0,c).【解答】解解法一逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过
一、
二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过
二、
三、四象限.故选D. 7.已知二次函数y=﹣x2﹣3x﹣,设自变量的值分别为x1,x2,x3,且﹣3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是( )A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【分析】先利用对称轴方程得到抛物线的对称轴,然后根据二次函数的性质求解.【解答】解抛物线的对称轴为直线x=﹣=﹣3,因为﹣3<x1<x2<x3,而抛物线开口向下,所以y1>y2>y3.故选A. 8.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为( )A.x1=﹣3,x2=﹣1B.x1=1,x2=3C.x1=﹣1,x2=3D.x1=﹣3,x2=1【考点】抛物线与x轴的交点.【分析】直接利用抛物线与x轴交点求法以及结合二次函数对称性得出答案.【解答】解∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为x=﹣1,∵抛物线的对称轴为直线x=1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为(3,0),∴方程ax2﹣2ax+c=0的解为x1=﹣1,x2=3.故选C. 9.已知⊙O的半径为3,△ABC内接于⊙O,AB=3,AC=3,D是⊙O上一点,且AD=3,则CD的长应是( )A.3B.6C.D.3或6【考点】垂径定理;等边三角形的判定与性质;勾股定理.【分析】根据题意,画出草图,此题中点D的位置是不确定的,点D可在上,也可在上,所以需分情况讨论.利用等边三角形的判定定理和性质求解.【解答】解第一种情况,当点D在AC弧上时,连接OA、OC、OD.所以AD=OA=OC=OD=3,△AOD是等边三角形,∠ADO=∠DAO=∠AOD=60°.过O作OP垂直弦AC于P,根据垂径定理,PA=PC=AC=.∴在Rt△AOP中,OP=,∴∠OAP=30°,∠AOP=60°=∠AOD.∴OP与OD重合,即OD垂直平分弦AC,所以CD=AD=3.第二种情况当点D在AB弧上时,同理得△AOD是等边三角形,∠AOD=60°.由
(1)知∠AOC=120°.∴∠AOD+∠AOC=180°,即D、O、C在同一直线上,故CD=6.故选D. 10.二次函数y=ax2+bx+c(a>0)的顶点为P,其图象与x轴有两个交点A(﹣m,0),B(1,0),交y轴于点C(0,﹣3am+6a),以下说法
①m=3;
②当∠APB=120°时,a=;
③当∠APB=120°时,抛物线上存在点M(M与P不重合),使得△ABM是顶角为120°的等腰三角形;
④抛物线上存在点N,当△ABN为直角三角形时,有a≥正确的是( )A.
①②B.
③④C.
①②③D.
①②③④【考点】二次函数综合题.【分析】
①把A、B两点的坐标分别代入抛物线的解析式得到
①式和
②式,将两式相减即可得到m=,即可得到C(0,3a﹣3b),从而得到c=3a﹣3b,代入
②式,就可解决问题;
②设抛物线的对称轴与x轴的交点为G,则有PG⊥x轴,只需求出点P的坐标就可解决问题;
③在第一象限内作∠MBA=120°,且满足BM=BA,过点M作MH⊥x轴于H,如图1,只需求出点M的坐标,然后验证点M是否在抛物线上,就可解决问题;
④易知点N在抛物线上且△ABN为直角三角形时,只能∠ANB=90°,此时点N在以AB为直径的⊙G上,因而点N在⊙G与抛物线的交点处,要使点N存在,点P必须在⊙G上或⊙G外,如图2,只需根据点与圆的位置关系就可解决问题.【解答】解
①∵点A(﹣m,0)、B(1,0)在抛物线y=ax2+bx+c上,∴,由
①﹣
②得am2﹣bm﹣a﹣b=0,即(m+1)(am﹣a﹣b)=0.∵A(﹣m,0)与B(1,0)不重合,∴﹣m≠1即m+1≠0,∴m=,∴点C的坐标为(0,3a﹣3b),∵点C在抛物线y=ax2+bx+c上,∴c=3a﹣3b,代入
②得a+b+3a﹣3b=0,即b=2a,∴m==3,故
①正确;
②∵m=3,∵A(﹣3,0),∴抛物线的解析式可设为y=a(x+3)(x﹣1),则y=a(x2+2x﹣3)=a(x+1)2﹣4a,∴顶点P的坐标为(﹣1,﹣4a).根据对称性可得PA=PB,∴∠PAB=∠PBA=30°.设抛物线的对称轴与x轴的交点为G,则有PG⊥x轴,∴PG=AG•tan∠PAG=2×=,∴4a=,∴a=,故
②正确;
③在第一象限内作∠MBA=120°,且满足BM=BA,过点M作MH⊥x轴于H,如图1,在Rt△MHB中,∠MBH=60°,则有MH=4sin60°=4×=2,BH=4cos60°=4×=2,∴点M的坐标为(3,2),当x=3时,y=(3+3)(3﹣1)=2,∴点M在抛物线上,故
③正确;
④∵点N在抛物线上,∴∠ABN≠90°,∠BAN≠90°.当△ABN为直角三角形时,∠ANB=90°,此时点N在以AB为直径的⊙G上,因而点N在⊙G与抛物线的交点处,要使点N存在,点P必须在⊙G上或⊙G外,如图2,则有PG≥2,即4a≥2,也即a≥,故
④正确.故选D. 二.认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.若函数y=(m﹣1)x|m|+1是二次函数,则m的值为 ﹣1 .【考点】二次函数的定义.【分析】根据二次项系数不等于0,二次函数的最高指数为2列出方程,求出m的值即可.【解答】解由题意得m﹣1≠0,|m|+1=2,解得m≠1,且m=±1,∴m=﹣1.故答案为﹣1. 12.如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是 35° .【考点】圆周角定理;圆心角、弧、弦的关系.【分析】首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角,可得∠C=90°,继而求得∠B的度数,然后由D是的中点,根据弧与圆周角的关系,即可求得答案.【解答】解连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠B=35°.故答案为35°. 13.把一个体积是64立方厘米的立方体木块的表面涂上红漆,然后锯成体积为1立方厘米的小立方体,从中任取一块,则取出的这一块至少有一面涂红漆的概率是 .【考点】概率公式;认识立体图形.【分析】根据题意可知共可据64块,至少有一面涂红漆的小正方体有56个,根据概率公式的计算即可得出结果.【解答】解∵至少有一面涂红漆的小正方体有56个,∴至少有一面涂红漆的概率是=.故答案为. 14.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为 0 .【考点】抛物线与x轴的交点.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为0. 15.△ABC的一边长为5,另两边长分别是二次函数y=x2﹣6x+m与x轴的交点坐标的横坐标的值,则m的取值范围为
2.75<m≤9 .【考点】抛物线与x轴的交点.【分析】根据一元二次方程的根与系数的关系及三角形的三边关系可得到(x1﹣x2)2<25,把两根之积与两根之和代入(x1﹣x2)2的变形中,可求得m的取值范围,再由根的判别式确定出m的最后取值范围.【解答】解由根与系数的关系可得x1+x2=6,x1•x2=m,由三角形的三边关系可得|x1﹣x2|<5,∴(x1﹣x2)2<25.∴(x1+x2)2﹣4x1•x2<25,即36﹣4m<25.解得m>.∵方程有两个实根,∴△≥0,即(﹣6)2﹣4m≥0.解得m≤9.故答案为
2.75<m≤9. 16.如图,在平面直角坐标系中,点A的坐标是(4,3),动圆D经过A、O,分别与两坐标轴的正半轴交于点E、F.当EF⊥OA时,此时EF= .【考点】垂径定理;坐标与图形性质;勾股定理.【分析】作出辅助线,利用两点的距离公式计算出OA,根据圆周角定理得到EF为⊙D的直径,再根据垂径定理得到CO的值,设OE=t,根据勾股定理得出关于t的方程,进而计算出CE的值,设⊙D的半径为r,则OD=r,利用勾股定理得出关于t的方程,解出r的值即可.【解答】解连接AE、OD,作AB⊥x轴于B,OA与EF垂直于C,如图1,∵A(4,3),∴OA==5,∵∠EOF=90°,∴EF为⊙D的直径,∵EF⊥OA,∴CO=AC=OA=,∴EO=EA,设OE=t,则AE=t,BE=4﹣t,在Rt△ABE中,AB=3,∵AB2+BE2=AE2,∴32+(4﹣t)2=t2,解得t=,在Rt△OEC中,CE==,在Rt△OCD中,设⊙D的半径为r,则OD=r,CD=r﹣,∵DC2+OC2=OD2,(r﹣)2+()2=r2,解得r=,∴EF=2r=;故答案为. 三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.
(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).
(2)在△ABC中,AC=4米,∠ABC=45°,试求小明家圆形花坛的半径长.【考点】作图—应用与设计作图.【分析】
(1)分别作出AB、BC的垂直平分线,相交于一点O,再以点O为圆心,以OA为半径画圆,即可得解;
(2)连接OA,OC,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AOC的度数为90°,然后根据等腰直角三角形直角边与斜边的关系求解即可.【解答】解
(1)如图所示,⊙O即为所求作的圆形花坛的位置;
(2)连接AO,CO,∵∠ABC=45°,∴∠AOC=2∠ABC=45°×2=90°,∵AC=4米,∴AO=AC=×4=2米.即小明家圆形花坛的半径长2米. 18.在1个不透明的口袋里,装有红、白、黄三种颜色的乒乓球(除颜色外,其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白色的概率为
0.5.
(1)求口袋中红球的个数;
(2)若摸到红球记0分,摸到白球记1分,摸到黄球记2分,甲从口袋中摸出一个球,不放回,再找出一个画树状图的方法求甲摸的两个球且得2分的概率.【考点】列表法与树状图法;概率公式.【分析】
(1)首先设口袋中红球的个数为x;然后由从中任意摸出一个球,这个球是白色的概率为
0.5,根据概率公式列方程即可求得口袋中红球的个数;
(2)根据题意画树状图,根据题意可得当甲摸得的两个球都是白球或一个黄球一个红球时得2分,然后由树状图即可求得甲摸的两个球且得2分的概率.【解答】解
(1)设口袋中红球的个数为x,根据题意得=
0.5,解得x=1,∴口袋中红球的个数是1个;
(2)画树状图得∵摸到红球记0分,摸到白球记1分,摸到黄球记2分,∴当甲摸得的两个球都是白球或一个黄球一个红球时得2分,∴甲摸的两个球且得2分的概率为=. 19.如图,AB是⊙O的直径,C、D两点在⊙O上,若∠C=45°,
(1)求∠ABD的度数.
(2)若∠CDB=30°,BC=3,求⊙O的半径.【考点】圆周角定理;等腰直角三角形.【分析】
(1)求出∠A的度数,继而在Rt△ABD中,可求出∠ABD的度数;
(2)连接AC,则可得∠CAB=∠CDB=30°,在Rt△ACB中求出AB,继而可得⊙O的半径.【解答】解
(1)∵∠C=45°,∴∠A=∠C=45°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ABD=45°;
(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=∠CDB=30°,BC=3,∴AB=6,∴⊙O的半径为3. 20.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【分析】
(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;
(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.【解答】解
(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得0=﹣32+3m+3,解得m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为(1,4).
(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为y=kx+b,∵点C(0,3),点B(3,0),∴,解得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,点P的坐标为(1,2). 21.已知如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求四边形AEOF的面积.
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围.【考点】圆周角定理;全等三角形的判定与性质.【分析】
(1)先根据BC为半圆O的直径,OA为半径,且OA⊥BC求出∠B=∠OAF=45°,再根据全等三角形的判定定理得出△BOE≌△AOF,再根据S四边形AEOF=S△AOB即可得出答案;
(2)先根据圆周角定理求出∠BAC=90°,再根据y=S△OEF=S四边形AEOF﹣S△AEF即可得出答案.【解答】解
(1)∵BC为半圆O的直径,OA为半径,且OA⊥BC,∴∠B=∠OAF=45°,OA=OB,又∵AE=CF,AB=AC,∴BE=AF,∴△BOE≌△AOF∴S四边形AEOF=S△AOB=OB•OA=2.
(2)∵BC为半圆O的直径,∴∠BAC=90°,且AB=AC=2,y=S△OEF=S四边形AEOF﹣S△AEF=2﹣AE•AF=2﹣x(2﹣x)∴y=x2﹣x+2(0<x<2). 22.某景点试开放期间,团队收费方案如下不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.
(1)求y关于x的函数表达式;
(2)景点工作人员发现当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【考点】二次函数的应用;分段函数.【分析】
(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.
(2)由
(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,根据二次函数的性质即可解决问题.【解答】解
(1)y=.
(2)由
(1)可知当0<x≤30或m<x<100,函数值y都是随着x是增加而增加,当30<x≤m时,y=﹣x2+150x=﹣(x﹣75)2+5625,∵a=﹣1<0,∴x≤75时,y随着x增加而增加,∴为了让收取的总费用随着团队中人数的增加而增加,∴30<m≤75. 23.如图,直线l y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在
(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d
1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).【考点】二次函数综合题.【分析】
(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;
(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化;
(3)
①由
(2)可知m=,代入二次函数解析式即可求出纵坐标的值;
②可将求d1+d2最大值转化为求AC的最小值.【解答】解
(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=ax2﹣2ax+a+4,∴3=a+4,∴a=﹣1,∴二次函数解析式为y=﹣x2+2x+3;
(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为﹣1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知M的坐标为(m,﹣m2+2m+3),S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=×m×3+×1×(﹣m2+2m+3)﹣×1×3=﹣(m﹣)2+∴当m=时,S取得最大值.
(3)
①由
(2)可知M′的坐标为(,);
②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90°,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(,),∴由勾股定理可求得AB=,M′B=,M′A=,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得M′B2﹣BG2=M′A2﹣AG2,∴﹣(﹣x)2=﹣x2,∴x=,cos∠M′BG==,∵l1∥l′,∴∠BCA=90°,∠BAC=45°方法二过B点作BD垂直于l′于D点,过M点作ME垂直于l′于E点,则BD=d1,ME=d2,∵S△ABM=×AC×(d1+d2)当d1+d2取得最大值时,AC应该取得最小值,当AC⊥BM时取得最小值.根据B(0,3)和M′(,)可得BM′=,∵S△ABM=×AC×BM′=,∴AC=,当AC⊥BM′时,cos∠BAC===,∴∠BAC=45°.。


